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The familiar definition of Liapunov systems [l] is generalized for systems with lag. The 
present paper concerns a system closely related to that of Liapunov involving a small 
addition periodic in t . A theorem concerning the existence of a periodic solution is 

proved. An example is investigated. 

1, Let us consider the system described by equations with lag of the form 
0 

dx 
dt= s ~(t+6)dy(6)+X(z(tt6))+CLF(t,IL(t+6),CL) (1.1) 

-r 

where IL: is an n-dimensional vector and r (6) is an n x n matrix of the functions 
vii (6) with bounded variation defined on the segment [-- ‘t, 01; the integral is to be 
interpreted in the Stieltjes sense ; .X (z (6)) = {Xi (CE (6))) is a nonlinear functional 
defined on the piecewise continuous functions z (6), - z < 6 < 0 (with discontinu- 
ities of the first kind) bounded in norm, i.e. 11 z (6) I/ < R, where R > 0, 

Substituting any vector function IL: (y, S) analytic in y and differentiable with respect 

to 6 into the functional X (x (6)) , we obtain the analytic function X (Z (y , 6)) = 

= Xl (!I). 
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The functional F (t, 2 (6), p) = { Fi (t, z (6), p)} (p is a small parameter) is a 

continuous function of t, periodic with the period 2n, and is also a continuous function 

of l& )cLI<(*,V>O, tc (- 007 m). 
Let us assume that.the second Frechet derivative of the functional X and the first Fre- 

chet derivative of the functional F exist in some domain G of the space of piecewise- 

continuous functions [- r, 0] . This enables us to write 

X (x (6) + s (6)) - X (x (6)) = X’ (x-(@))(s (6)) + (1.3) 

+ 1/zX" (x (6)) (2 (fv, 2 (6)) + ($2 (z (WY 2 (W) 

F (6 z (6) + z (6) 7 P) - F (4 z (W, p) = 

= F’ (6 22 m, P) (2 (6)) + 01 (c 5 m z w, p) 

where X’, F’ are linear functionals of z (6) and X”is a quadratic functional of z (6) , 

Further, let us assume that the derivatives X': F’ satisfy the Lipschitz conditions in 
Z (6) in the domain G. 

Let us consider the “generating” system 

dx 
x= 1 s(t+fi)dr1(6)+X(s(t+Q)) (1.4) 

If we take the vector segment -T 

5s (6) = z (t + 6) (-‘G\(+J<O) 

as an element of the solution, then system (1.4) is associated in the function space B 
of piecewise-continuous functions with norm (1.3) with the following system of *‘ordi- 
nary” differential equations with operator right side p]: 

!g! = AZ, (6) + R (2~(lY)) (1.5) 

AZ(V)={y for -T<d<O, [ s(v)dq(v) for v = 0 
I --5 

R(s(v))= (0 for: -_<v<O, X(5(v)) for v = 0} 

Let the characteristic equation 

A(h)= I-,%+ f eWq(6)1=0 (1.6) 
-T 

have the pair of purely imaginary roots A,i,s = f pi. 
Let us also assume that the remaining roots of characteristic equation (1.6) have nega- 

tive real parts. 

It is shown in [3] that in this case we can introduce the conjugate variables y, g and 
the vector function zlt (e) according to the formulas 

(1.7) 
y = f ht @)I, p =T [Zt @)I, z,t @) = zt (6) - b @) Y -W) g 
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b (6) = {bi (6)) = {Az,~ (02) ems} d-l, d = Am, (4 [~],=,; (1.9) 
Here Ajl (~i) is the algebraic complement of an element of the determinant A (oi) 

situated at the intersection of thej th row and the i,th column ( Allkl (oi) # 0). 
We can rewrite system (1.5) in the variables y, a, zrt (6) to obtain (1.10) 

dy / dt = oG/ + Y, (Y, a, zlt (fi)), di7 / dt = - oQ7 + r, (Y, Y, zlt (6)) 

kt @) I dt = Az,t (6) + 2, (Y, a, Zlt P)), Zlt (6) CL : f ht (+)I = 0 

Here Yt, 2, satisfy all the requirements imposed on X; moreover, 2, assumes real 
values only. It is shown in [3] that the variables y, fj, zlt (6) have a one-to-one rela- 

tionship with 2 (6) , so that systems (1.4) and (1.10) are equivalent. 
We call system (1. IO) a “Liapunov system with lag” if the following conditions are 

fulfilled : 
1) characteristic equation (1.6) has no roots of the form f Noi, (where N is an inte- 

ger, including zero) other than the pair of simple roots h,,, = -i_ wi,; 
2) system (1.10) has a first integral of the form 

yd + St (Y, j7, Zlt (6)) = conSt (1.11) 

where 8, is an analytic function of y, g and a functional of Zlt @).The order of sr 
in all 01 its arguments in the neighborhood of the point y = tj = zlt (6) = 0 is higher 

than two. 

The existence of an integral of the form (1.11) implies that the simple case [S] of 

stability of system (1. 10) applies. 
Expressed in the variables Y, a, zlt (6) system (1.1) becomes 

dy / dt = oiy + Y, (y, y, zlt (6)) + P G, (t, y, Y, Zlt (6)~ P> (1.12) 

dy / dt = - oia +T, (y, y, qt (6)) + $1 (tv 8, YP Zlt (I% P) 

dzlt (6) / dt = Az,t (6) + & (y, y, qt (6)) + PHI (t, Y, Yy Zlt (6)~ P) 

where G,, HI satisfy the same requirements as F and whereH, assumes real values only. 
We shall consider the existence and construction of periodic solutions for system (1.12) 

closely related to a Liapunov system with lag. The solutions to be considered become 

the periodic solution of generating system (1.10) for p = 0. A similar problem for a 

system containing terms with lag in small additions only was investigated in [4]. 

2. Generating system (1.10) has a family of periodic solutions [3] which depends on 
the arbitrary constants c and h, 

Y’ 0 + h, c), go (t + h 4, ~l”,t+h (6, 4 (2.1) 

with the initial conditions y” (0, C) = 0" (0, C) = c, where c is a constant of small 
absolute value. The period of solution (2.1) is given by the formula 

2n 
T = Q (c) 

_ zz $- (1 + h2c2 + h4c4 + . . .) w-3 
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where series (2.2) contains terms with even powers of c only. We denote the first non- 

zero coefficient ht by h,,. 
The relation 

(1 + hzrc2’ + . . .) 2n / o = 2n / m (2.3) 

where m is an arbitrary integer, enables us to determine those values of c for which solu- 
tion (2.1) has the period 2n. When h,, (0 - m ) > 0 Eq. (2.3) has only two real roots 
of which one is positive and the other negative Cl]. Denoting one of these roots by C, 

and substituting its value into (2. l), we obtain the solution 

Y’ (t + h, cm). 8” (t + h, cm), fl,t+h @, Cm) (2.4) 

with the period 2n; / m. 
Let us return to system (1.10). We shall attempt to find a particular solution of system 

(1.1) in which ~lt (6) can be expressed in series form, 

Zlt* (6, y, Y) = E %tCk) (6, Y, Y) (%t(h-) (6, Y, J) c L) (2.5) 
k=l 

Here zltck) (6, y, 0) is a kth order form in the variables y, g. 
It is easy to verifv that in this case we have 

( 

&CM a,(k) 

> 
oi = Ad”) + Q’“’ (6, y, y) 

(2 -6) 

alJY_ aq - y (k > I), Q(l) (6, y, ij) E 0 

where Q@) (6, y, y) is a known k th order form for a fixed k . Let 

QCk)(G, y, y) = 2 bg (6) yQQ, 
P+i=k 

dk)(lY, y, 7J) = 2 a;; (6) yn)yq (2.7) 
p+q=k 

Let us substitute (2.7) into (2.6). Now, equating the coefficients of the product y$ys, 
we obtain IJ Cp _ qj 

oi - Al a,,(k) (6) = bT)Jk‘) (6) (Jq (6) f 9 (6)) j2.8) 
Here J is an identity operator. 

We note that the spectrum of the operator A does not contain any points of the form 
& No i (where N is an integer) in the subspace L . Hence, operator equation (2.8) is 
uniquely solvable for a,,(k) (G), and 

a,,(“) (6) c L, a,,(‘) (6) ZE 0 

In this way we obtain series (2.5) which formally satisfies system (1.10). In [3] it is 
shown that substitution of the functions Y’, Y” into series (2.5) yields a convergent series 
which is the periodic solution zO~,~+~ (6, c). 

Let us set 
Zlt (6) = Zt (6) + %t* (6, Y, Y) (2.9) 

in system (1.10). This yields (2.10) 

dy / dt = oiy + Y (Y, Y, Zt @)), dy / dt = - oiy + 7 (y, y, zt (6)) 

dzt (6) / dt = Azt (6) + 2 (Y, a, zt @), 6) (2 (Y, Y, 0, 6) = 0) 

Periodic solution (2.4) of system (2.10) is 

Y” (t + h, c,), Y” (t + h, c,), zt (6) = 0 (2.11) 
Let us construct the equations in variations of system (2.10) for solution (2. ll), 
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~=(~),5,-[-~oi+(~)~i+~~(Y”,Y”,o)(t1,(6)) (cont*) 

dv = A% (6) + 2’ (Y”, Y”, 0) (rll(6)) 
Here and below the parentheses (. . . . ),, denote substitution of solution (2.11). It is 

easy to show that system (2.12) has a unique periodic solution of the form 

( 

dy”’ 
--=‘P,J&‘P,‘lt(6)G0 

dt (2.13) 

Let us consuuct the “conjugate” system 

drlt* (6) 
~ = - A*%* (6) -z’* (Y”, $7 0) cvt* (6)) dt (2.14) 

The operator z’* is defined in similar fashion. System (2.14) has a unique periodic 
soludon 

($7 ST rt* (6) - o> 
Let us determine I#. Setting qi (6)=?j, * (6) ~0 in (2.12) and (2.14), we obtain 

the following relation for the solutions: 

t E* + E E* = const (2.15) 
First integral (1.11) for system (2.10) can be written as 

N = y y + S (y, Y, zt (6)) = co& (2.16) 
The order of the function’s in all its arguments in the neighborhood of the point .1/ = 

= I= zt (6) = 0 is higher than two, It is easy _to show that the_ expression 

(~jo5+j~)oE+~‘(y”,~“,0)(~~(~))=~~n~~ (2.17) 

is the first integral of system in variations (2.12). 

Setting vt (6) E 0 in (2.17) and comparing with (2.15). we find that as our functions 

9, 3; we can take 
‘II, = (%),, + = ($j, (2.18) 

Now let us consider system (1.12) after making substitution (2.9). 

& / dt = O~Y + Y (Y, Y, zt (6)) + P G (t, Y, a, zt W, ~1 

dg 1 dt = - oig + r ($7, Y, Zt (fi)) + p c (6 Y, .!I, Zt (a CL) 

dzt (6,) / dt = Azt (6) + 2 (y, g, zt (@.)I 6) + p If (h Y, 8, Zt 0% 6, I-‘,) (2.19) 

Here the functional G and the operator H satisfy the same requirements as G,, HI_ 
Let us introduce the notation 

G, = G (6 y”, $‘, 0, O), H, = H (t, y”, a”, 0, 0) 

Y,’ (2t P)) = Y’ (Y”, l-7, 0) (zt (W), 2,’ (zt (6)) = 2’ (Y”, go, 0) (xt (6)) 
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The function wt (0) is the unique periodic solution of the equation 

dwf (01 
- = Awt (@I + 20 bt (@I) + Hot dt tf+ (8) c L 

Theorem. System (2.19) has a periodic solution of period 23t which becomes 
generating solution (2.11) for p = 0 only if 

(2.20, 

If, in addition, 
#O 

h=hx 
(2.21) 

where h = Jrzi is a root of Eq. (2.20), then the required periodic solution is unique. 
This solution is a continuous function of p. 

P I o o f . Making the substitution 

Y - Y% + fi, cm) + EL=(~), zt 6% = Fat (@) 

in system (2.19). we find that the latter becomes 

Here 

@P, 8, 3, q(0), p)=- ; ($),us+ (-ggou”+ 
++($+‘+ (~)o"+(~)o"+(~)o+Go'(u,(0))+ 

+ ($), (9 UN IA + (-g), (q VW ii + Yo” (q (0h ut (0)) + p (. . .) (2.23) 

and X is defined in similar fashion. 

Let us set p = 0 in system (2.22). The above equation now yields ~~O)(~~ =. wf (6), 

where wt (8) c L. Let us substitute-the vector function ZJ~“‘(S) = KQ (6)‘into the first two 

equations of system (2.22) for p = 0. The resulting system has a periodic solution u’, 1’ 
only if (2.20). Let us assume that condition (2.20) has been satisfied by suitable choice 
of h = hr. We can show that if, in addition, we have (2.21), then there exists a unique 
periodic solution of system (2.22). Along with system (2.22) we consider the ancillary 

The quantity T is defined by (2.2). 

Ancillary system (2.24) is constructed in such a way that it always has a periodic 
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solution. This solution can be obtained by the method of successive approximations. 
Let us take IV(O) = 0 and the functions ul’, iilo, vl#“(S) = it (6) defined above as our 
first approximation. We can express the solution ul’ in the form 

ur” = Mr$ + -WC Gl + Yo’oq VN), cl + gbut NW 

Here L1 is a completely defined bounded operator, M is an arbitrary constant, and the 
function ? is defined in (2.13). 

The mth approximation can be determined from the system 

dvlt(m)(8) 
dt 

= Av,,(m)(6) + 2; (vlt’“‘(S)) + Ho + pcx(m-l) 

ax 

Wrn)= - SK s [@dq + @m-l)ql dt 

0 

Here the superscript m - 1 accompanying the quantities 0, 2 denote the substitution 
of the (m - i)-th approximation. From system (2.25) we obtain 

v1t '"'(6)=w,@)_tLz (tL 6,p p-l') 

drn)=Mq +JLp, c,+ Y,‘(v,, trn) (6)), iTo + F; (Vlt’“‘(6)))f4 (t,pa+l) + Wwp 

pifsm-l) + wWi$p 

where L, is a bounded operator. 

Carrying out the appropriate estimates we can show that for a sufficiently small 1 CL 1 
the sequences {~r(~)l, {W”“‘), (Q (m)(fJ)) converge uniformly to certain functions ul* 
(t, M, p), W’ (M, p) and to the vector segment z~rtf(M, 6, p). 

System (2.22) has a periodic solution if and only if 
2T: 

TV* (M, )I.) = - * c [@*I$ + (u*$] dt = 0 

0” 

CD* = CI) (t, u1*, 121*, Ult* (6), p) (2.26) 

Recalling the form of the functional (I, (2.23) and carrying out some simple but cum- 

bersome transformations, we can reduce Eq. (2.26) into 

(2.27) 

where the function is defined in (2.20) and H is some completely defined constant. If 
condition (2.21) is fulfilled, then Eq. (2.27) is uniquely solvable for M for sufficiently 
small ( p \ by virtue of the implicit function theorem ; moreover, M is a continuous func- 
tion of n in the neighborhood of the point p = 0. This means that system (2.22), and 
therefore system (2.19), have a unique periodic solution. 

Systems (2.19) and (1.1) are equivalent, which solves the problem of existence of a 
periodic solution of system (1.1). 



Periodfc solutions of systems with lag 399 

The required periodic solution can be constructed by means of the same procedure as 
that used to prove the theorem. The difficulties having to do with the determination of 

the periodic solution of adjoint system (2.14) are avoided, since this solution is deter- 
mined in the explicit form (2.18). 

3. For example, let us consider the system described by the equation 
C&z (t) - = alz (t) + QX (t - z) + p~~2 + p (a sin mt + d sin 2mt) 

dt (3.1) 

where 0 
0 

a1 = 0 ctg or, 
0 

CZz=-. 
sin at ’ 

y1= - sin or x (t + 6) sin o (z + 6) d6 

It is easy to show that the generating system is (for p = 0) a Liapunov system with 

lag, since it has the first integral ozY13 + Y12 _ 2,sywY1s = ,_cnst 

and since the characteristic equation of the linear part of system (3.1) has a pair of pure- 
ly imaginary roots hl,z = f wi, while the remaining roots have negative real parts. 

The functional f [xt (6)] and the function b (6) defined by formulas (1.8) and (1.9) 
in this case become --r 

f [z(S)] s x (0) + & ewiO* 1 x (Q e+“, dE, 
,ioa 

b (6) = 1 - oz csc wte--Lw: 
0 

Making substitutions (1.7), we can rewrite system (3.1) as 

zlt (6) sin o (t + 6) d6 + 9 L (iii - 

2 

y) 
I 

+ 

-5 
+ p (a sin mt + d sin 2mt) 

&i lfra O t = - ois + sin Ot IY s zl,(6)sino(z+6)d6 +qi(Y; -Y)]l f 
--c 

+ p (a sin nzt + (1 sin 2mt) 

-- = +t (6) + R 1~ (6) + b (6) Y + b (6) 2/l + ps (t, 6) - dt (3.2) 

- P (6) i- 6 (WI {[s; f =rt(6)sino(r +6)&Y + fi ‘(- 2 2 &v-Y) + 1 -7 
+ u (n sin mt + d sin 2mt) 

I 
where 

Ax (6) = (V for - z < 6 < 0, UlX (0) + a22 (- 7) for 6 = 0 

0 

R (x (6)) = {O 

2 

for 
cs 

x(t+ti)sino(z+6)dfr for 6 = 0 
--T 

s (t, 6) = (0 for --2<,(6<0, p (a sin mt + d sin 2mt) for 6 = 0} 

We shall attempt to find a particular solution zlt (6, Y, a) of the form (2.5) for the 
generating system (system (3.2) for p = 0) . Solving operator equations of the type 
(2.8), we obtain zlt* (6, Y, Y) = z2 (6, y, 5) + 13 (6. y, 27) + . . . 

za (6, Y, J) = u*lJ (6) y” + a11 (6) y% + n,, (6)O’ (3.3) 
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@o(6)=- 4 
7 sin ~re”~~~ r 

0 [(COS 207 - COS Ot) + i (2 sin 0~ -sin &jr) +cloi ( 

3.18 
(cont. ) 

__+-$ 
> 

r sin or 
a11 (W = 20 (1 - cos or) 

r 
( 

,ios ,408 

+-2$ K-- 
K > 

a02 (8) = a:0 (IY), K = i - -& e-iwT 

Let us make the substitution 

.zll (6) = Zt (6) + z1t* (6, Y* C) (3.4) 

in system (3.2) and set zt (6) - 0 in the resulting generating system. This yields a sys- 
tem of ordinary second-order differential equations, 

&/ldt = oiY + [VT/$ (3 - y) + . ..I2 (3.5) 

dg/dt = -wig + [‘/zv/yi (& - y) + . ..I” 

The terms not written out in the expressions in square brackets begin with a third- 
order form in Y, C, since simple computations show that 

0 

s 
apq (6) sin o (r + 6) dft = 6 (P + 9 = 2) 

-7 
The substitution 

Y = u + Y2 (k a) + Y, (u, U) + . . . 

yz(u, lz)= & i (242 + 2Uii - ‘/$S) 

Y3(U, U)=- &(u3+ 5uiPf l/*ii3) (3.6) 

transforms system (3.5) into 
du/dt = o i u - 5/1zy20-’ i z&i + . . . (3.7) 

&if& = --oiii f 5/~,y'L~-1iu1z3 -... 

System (3.7) has a family of periodic solutions 

u = ct?Qi, cp = SJ (c)(t + h), 62 (c) = 0 - 5/&o-'c2 + ..* (3.8) 

which depends on the arbitrary constants c and h. The period of solution (3.8) is given 

by the formula 
T(s)=% 

i 
I+$&+. . . 

) 
The equation T (c) = 2n/m for o ) m yields the two real roots cm_ Generating solu- 

tion (2.11) is of the form 
yo (t + h, c,) = cmeiqt+h) + & ic,t 

\ 
i +_f e?‘m(‘+h) - $ e+-zi”‘(‘+“) 

i 
+ c,a (. . .) (3.9) 

The first integral of (2.16) for zt (0) s 0 is 

H=yU+&(+-)S+.. . = const 

where the unwritten terms do not contain fourth-order terms in the variables Y, # . 
Formula (2.18) yields 4 z-Y0 - l/*y&' (F - y0)2 + . . . 

Equation (2.20) for determining h is 

asin mh 1 
5.P 

-C&++. . . 
j+ 

~~cos2mh+c8(...)=0 (3.10) 
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Solving Eq. (3.10) for h, we obtain 

h = - 3ad; ac+c5(. . .) 

Substituting the resulting value of h into formula (3.9) and the resulting expression 
for go into formula (3.3). we obtain the first approximation of the required periodic solu- 

tion of system (3.2). The formula 

X*0 (@) = xrt* (@, + 6 (@)Y” + s (@P 

yields the first approximation of the periodic solution of system (3.1). Computation of 

the subsequent approximation is not difficult. The expressions involved are extremely 
cumbersome, however. 
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A procedure for investigating oscillations based on the small parameter method is descri- 
bed. The proposed procedure involves the use of nonlinear difference equations of spe- 
cial form. A mathematical justification of the procedure will be found in fl]. It consists 

essentially in the construction of an ancillary system of differential equations whose 

solution coincides at certain instants with the solution of the initial system. Applications 
considered include cases of resonance in quasilinear systems. A first-approximation in- 
tegral stability criterion for periodic and almost-periodic solutions is derived. 

1, The difference equatfons, Let us consider the following system of dif- 
ference equations of order m: 

X nil - Xn = Py (Xn, ?V, PI (r&=0, 1, 2,. . .) (1.1) 

We assume that the right side is differentiable a sufficient number of times with respect 
to all of its arguments in some domain containing the solution X,. We also assume that 
the parameter l..t is small and that l.& > 0. Let us turn from (1.1) to a more general 
system of difference equations, introducing the ancillary vector function z (z, ~1 such 
that 

2 0% CL) = x7I (n=O, 1, 2, . ..) (I.21 


